Peaks, Means, and Determinants of Real-Time TVOC Exposures Associated with Cleaning and Disinfecting Tasks in Healthcare Settings

Source: M Abbas Virji Xiaoming Liang Feng-Chiao Su Ryan F LeBouf Aleksandr B Stefaniak Marcia L Stanton Paul K Henneberger E Andres Houseman, Annals of Work Exposures and Health, Advance Articles, June 4, 2019
(subscription required)

From the abstract:
Cleaning and disinfecting tasks and product use are associated with elevated prevalence of asthma and respiratory symptoms among healthcare workers; however, the levels of exposure that pose a health risk remain unclear. The objective of this study was to estimate the peak, average, and determinants of real-time total volatile organic compound (TVOC) exposure associated with cleaning tasks and product-use. TVOC exposures were measured using monitors equipped with a photoionization detector (PID). A simple correction factor was applied to the real-time measurements, calculated as a ratio of the full-shift average TVOC concentrations from a time-integrated canister and the PID sample, for each sample pair. During sampling, auxiliary information, e.g. tasks, products used, engineering controls, was recorded on standardized data collection forms at 5-min intervals. Five-minute averaged air measurements (n = 10 276) from 129 time-series comprising 92 workers and four hospitals were used to model the determinants of exposures. The statistical model simultaneously accounted for censored data and non-stationary autocorrelation and was fit using Markov-Chain Monte Carlo within a Bayesian context. Log-transformed corrected concentrations (cTVOC) were modeled, with the fixed-effects of tasks and covariates, that were systematically gathered during sampling, and random effect of person-day. The model-predicted geometric mean (GM) cTVOC concentrations ranged from 387 parts per billion (ppb) for the task of using a product containing formaldehyde in laboratories to 2091 ppb for the task of using skin wipes containing quaternary ammonium compounds, with a GM of 925 ppb when no products were used. Peak exposures quantified as the 95th percentile of 15-min averages for these tasks ranged from 3172 to 17 360 ppb. Peak and GM task exposures varied by occupation and hospital unit. In the multiple regression model, use of sprays was associated with increasing exposures, while presence of local exhaust ventilation, large room volume, and automatic sterilizer use were associated with decreasing exposures. A detailed understanding of factors affecting TVOC exposure can inform targeted interventions to reduce exposures and can be used in epidemiologic studies as metrics of short-duration peak exposures.